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1 Introduction

msms (ms mit1 selection) or (ms)2 is a program for simulation of different demo-
graphics and structured populations with selection, using a forward-backward
approach. Generally, it supports everything that ms does, but with selection at
one locus.

One goal of the project is to produce code that is modular and accessible for
extension by others. Currently, this means that the source and binary are always
distributed together to allow for critiquing, changes and patch submissions.

The purpose of this manual is not to provide a user guide, but to provide
details of the internals of the program. That is, to provide extra documentation
over and above the source code in a more generally accessible manner.

1.1 Simulation Outline

The simulation uses a two-step method. First, we simulate forward in time,
keeping track of the frequency of the beneficial allele using a standard Wright
Fisher model with demographic structure. This means that the number of
individuals in each successive generation is a binomial random variable with a
parameter dependent on the previous generation. The details are given below.

Once the forward simulation is completed, we then use the coalescent to track
sampled individuals back in time, conditional on the frequency of the beneficial
allele determined from the forward simulation. This coalescent includes migra-
tion, recombination and mutation of the beneficial allele. All parameters can
be functions of time, including demographic models and parameters.

2 Forward Simulations

We consider a standard structured Fisher Wright population with two alleles a
and A at a single locus. We assume that the allele A is beneficial and that we
have a diploid population. The fitness values for the ith deme is 1+saa

i , 1+saA
i ,

1 + sAA
i for genotype aa, aA, and AA, respectively. Migration from deme j to

1mit is “with” in German
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deme i, is defined as the proportion mij of deme i that is made up of migrants
from deme j. We let mii = 1−

∑

j mij , which is the proportion of nonmigrants
in deme i.

Let x be a vector (x1, x2, . . .) where xi is the relative frequency of the bene-
ficial allele A. Therefore xi = ni/(2Ni), where Ni is the population size of deme
i, and ni is the number of A copies in deme i.

The life cycle is selection, mutation, migration, and random mating. The
census occurs with the formation of zygotes from the infinite gamete pool. De-
viations from HWE within each deme due to sampling are ignored. Selection
occurs at the zygotic stage and separately within demes.

Now consider a single deme i with proportion xi of the beneficial allele. From
HWE, the amount of beneficial alleles after selection but before migration is,

ηA
i = xi

(

1 + (1 − xi)s
aA + xis

AA
)

(1)

and the amount of the nonbeneficial alleles is

ηa
i = (1 − xi)

(

1 + xis
aA + (1 − xi)s

aa
)

. (2)

We use the term amount to indicate that these are not proportions, ie are not
normalized. Now if we consider the amount of beneficial alleles in deme i that
comes from the migrants from deme j, we multiply the amount of beneficial
alleles after selection in deme j by mij . If we consider all demes, including the
nonmigrants from the mii term, the amount of beneficial alleles and nonbenefi-
cial alleles after selection and migration are,

ηA
i =

∑

j

mijxj

(

1 + (1 − xj)s
aA + xjs

AA
)

(3)

ηa
i =

∑

j

mij(1 − xj)
(

1 + xjs
aA + (1 − xj)s

aa
)

(4)

and we have redefined both ηA
i and ηa

i .
We can now write the new frequency x′

i in an infinite population by normal-
izing as follows,

x′

i =
(1 − ν)ηA

i + µηa
i

ηA
i + ηa

i

(5)

where µ is the mutation rate from A → a and ν is the mutation rate from
a → A.

We now sample the “infinite” population with a binomial random variable
and thereby include genetic drift. The number of A copies in the next generation
n′

i is given by

Pr(n′

i|ni) =

(

2Ni

n′

i

)

(x′

i)
n′

i(1 − x′

i)
2Ni−n′

i . (6)

We then sample this using a modified library from the colt project2. The sim-
ulation proceeds until some stopping condition is met.

2http://acs.lbl.gov/~hoschek/colt/
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3 Coalescent Simulations

Coalescent simulations are somewhat more involved due to recombination and
selection. The coalescent rate is dependent on population size. However, the
individuals that have the beneficial allele cannot coalesce with individuals that
don’t have the allele. Thus, the “virtual population size” for a lineage in say, the
selected class, is a function of time. Further, it is not a well-behaved function
of time since we include drift. This complication extends to most events. The
events considered are migration, coalescence, recombination, and mutation at
the selected locus.

The simplest method is to use a generation by generation method. That is,
we check in each generation if an event occurs with a probability that produces
the correct geometric distribution where we define these probabilities later. This
is the method used by Yuseob Kim’s selective sweep program, with interval
rescaling to ensure that all events are sufficiently rare. However, we use an
explicit N because of selection (i.e. we don’t “scale” parameters, and N = 106

will mean that on the order of 106 tests need to be done), and the complexity
scales with N , whereas with the standard coalescent it scales with sample size
which is much smaller than N . Since this method is quite slow, regardless of
the rescaling used, we have implemented a faster method that is outlined below.

3.1 Implementation Outline

When we are not in a selection phase, normal coalescent simulations are per-
formed. That is, an exponential random variable is produced for a small set of
events, then the shortest exponential variable is taken, and finally, the details
of the event are decided; which often requires more random numbers to choose
the specific event. This is reasonably well-established in the literature and is
what ms also does.

When we are in a selection phase, we first generate exponential random vari-
ables for recombination, the only event that is independent of allele frequencies,
and take the first event. We then generate more exponential variables, using the
fast coalescent method (described below) with the shortest current exponential
time as a parameter. This way the fast simulations can return faster in many
cases. Finally, we pick the event with the shortest time and “complete” it as
above.

It should be noted that for most events we must generate independent event
times for each deme and each allelic class due to the dependence on the allele
frequencies. For example, we must generate a coalescent event time for each
deme and each class, and pick the smallest result because the allele frequencies
in each deme vary stochastically.

3.2 Fast Coalescent Simulations

The discrete method above produces geometric waiting times between events.
We can approximate this with an exponential, with reasonably good accuracy;
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this is in fact what the original Kingman Coalescent does. So rather than
just checking the probability of an event at generation t, we can produce an
exponential random variable instead. However, we need to be able to take into
account the changing rate of the process. Without considering a specific event,
we just discuss the generic scheme used in the code.

For concreteness and simplicity, we assume that we have a constant rate λ
over a time interval dτ . The cumulative probability function of the exponential
distribution is

Pr(X ≤ τ) = 1 − e−λτ . (7)

So the probability of an event not happening in an interval of length dτ is just
the complement

Pr(dτ < X) = e−λdτ . (8)

Let λt be the rate as a function of generations with t ∈ N and t = ⌊ τ
dτ

⌋. We
assume that there is a constant part, and a variable part. So λt = λαt and αt is
now the function of generations and αt > 0,∀t . The probability that an event
does not happen after n generations is

Pr(n < N) =

n
∏

t

e−λαtdτ (9)

= e−λdτ
P

n
t

αt . (10)

This result can be used to generate exponentially distributed time intervals
efficiently as follows. Let U be a uniform random variable on the interval (0, 1].
We can equate (10) with U and solve for n. We further simplify by setting
dτ = 1 as τ is in generations. We have

U = e−λ
P

n
t

αt (11)

lnU = −λ

n
∑

t

αt (12)

− lnU

λ
=

n
∑

t

αt. (13)

We can then sum from the initial generation until the right hand side of (13) is
larger than the the left hand side and get a discrete estimate of an exponential
variable3.

Because we are generating many such time intervals, and because we only
choose the shortest interval, we can futher optimise this process by only sum-
ming up to the smallest n we have observed so far. If the right hand side of
equation (13) is still larger than the left hand side, we know that the new event

3i.e. this is in fact a geometric distribution. However, this is only an intermediate step
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cannot have a smaller time interval than the current n. If however the summa-
tion does excede the left hand side, the event type and n is updated with the
new values.

We futher extend this to include fractional generations. Let τ0 denote the
current real valued time and we wish to determine the time of the next event
τn. The initial generation for the sum is t0 = ⌊τ0⌋. First, we find largest integer
n such that

− ln U

λ
≥ αt0(⌈τ0⌉ − τ0) +

n
∑

t=t0+1

αt (14)

holds. Let τn = τ0 + n − t0 + δ and

δαn+1 =
− lnU

λ
− αt0(⌈τ0⌉ − τ0) +

n
∑

t=t0+1

αt. (15)

In words, we have used the rectangle rule to “integrate” the discrete values of
αt over continuous time. This has the property that if αt is a constant, then we
recover true exponential waiting times as per the nonselected case. This also
permits that events can happen with time intervals smaller than one generation.
This can be important when one is studying the limits of strong selection for
example.

3.3 Coalescent Events

Coalescent events can only happen between lineages in the same class and the
same deme. Thus, there is a dependence on frequency of the selected allele as
stated earlier.

Let kA
i be the number of lineages in deme i that is in the selected allelic

class, ie with allele A. The coalescent rate between these lineages is

RA
c =

kA
i (kA

i − 1)

4Nixi

(16)

or

Ra
c =

ka
i (ka

i − 1)

4Ni(1 − xi)
(17)

for the unselected allelic class. Thus, when using the fast coalescent method,
we set αt = 1

xi(t)
or αt = 1

1−xi(t)
as appropriate.

3.4 Migration

Migration when there is no selection is simple because the definition of mij is
constructed to make it simple. Recall that mij is defined as the proportion of
deme j that is made up of migrants from deme i. If we trace a lineage back in
time, the probability that it migrates from deme j to deme i backwards in time
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is just mij . However, we need to consider the different allelic classes. That is,
if a lineage migrates between demes, it cannot change allelic classes.

The total proportion of deme j that is in the selected allelic class is just xj .
While the total proportion that migrated from deme i is mij , and so the total
proportion of migrated individuals that are in the selected allelic class is

ximij

xj
.

Hence, the migration rate from deme i to j in forward time4 is

RA
m = kA

j

ximij

xj

(18)

Ra
m = ka

j

(1 − xi)mij

1 − xj

. (19)

Again, we can now set αt = xi(t)
xj(t)

or αt = 1−xi(t)
1−xj(t)

, respectively, for the selected

class or unselected class.

3.5 Mutation at the Selected Locus

Mutation at the locus under selection also gains a dependence on the proportions
of selected to unselected classes. We only consider recurrent mutation from the
wild type to the selected allele in forward time. That is, in backwards time a
lineage can only move from the selected class to the unselected class.

Consider the proportion of the selected alleles in a deme that arises from
mutation on the selected locus. This is simply µ(1 − xi)/xi, that is the total
amount of selected alleles that arise from mutation µ(1− xi) normalized by the
total amount of selected alleles. So the rate backwards in time is

Rµ =
µ(1 − xi)

xi

. (20)

Thus αt = (1 − xi(t))/xi(t)
A similar argument can be made for recurrent mutation in the opposite

direction and we arrive at αt = xi(t)/(1 − xi(t)).

3.6 Recombination

The recombination rate is not directly affected by the allele frequencies. How-
ever, there are a number of other considerations that make recombination the
most difficult event to implement.

First, we must consider the sequence model. We use an abstract continuous
model without considering an explicit mutation model at this stage. Here we
only need to consider which sections of a sequence are active, in that we can
observe the mutation process on that region from our sampled individuals. The
sequence here is just a set of nonoverlapping intervals that denote these active
regions. Furthermore, the regions are not constrained to have a summed length
of 1, but can be smaller or larger. We define a single active interval at sampling
time as (0, 1). Multiple loci can be easily added by simply defining more than
one active interval at sampling time.

4Thus, in backward time the lineages move from deme j to deme i.
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Figure 1: The figure shows how active regions (green) change with recombi-
nation events and coalescent events. Recombination events split active regions
whereas coalescent events join them. However, some regions may “coalesce”
(red). In this case, the region is active below the coalescent event but not active
above the coalescent event.

Ignoring selection, we consider a simple coalescent recombination graph in
figure 1. Here just two sequences have recombination events, and then the resul-
tant 4 lineages coalesce. Going back in time, the recombination events increase
the number of lineages present by splitting the active regions into complemen-
tary active regions.

When we have a coalescent event, we use a union of the active region of both
coalescing lineages. However, we need to also consider coalesced regions. That
is, active regions that are no longer present in any other lineage. Such regions
are shown in red in Figure 1, and are not active above a coalescent event. But,
they are active below the coalescent event. In other words, we cannot observe a
segregating site in our samples over the coalesced region from a mutation that
occurs above5 the coalescent event.

Over time, the total length of active regions reduces to zero, and we do
not need to run the coalescent simulation to the ultimate common ancestor of
the samples. Further optimization is needed when high recombination rates
are used. It is a fact that some recombination events result in unobservable
lineages. That is, a lineage with no active regions. This can happen if the cut
site of a recombination event happens outside the upper or lower bounds of the
active regions. Therefore, instead of using the recombination rate, we use the
observable recombination rate for each lineage. This is the distance between the
upper and lower bounds of active regions, times the recombination rate.

We note that at this stage we do not consider mutations above coalesced

5Above here means further into the past.
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regions, and thus we are in fact considering polymorphisms.

3.6.1 Recombination with Selection

When considering recombination with selection, we must take into account that
there is a selected locus somewhere on the sequence. The allele at this locus can
be either the selected allele, or the unselected allele. We do not explicitly tag
sequences with the allele but rather track lineages as either in the selected class
or unselected class. The locus has a position on the sequence, and can be some
distance away from any active region. This has an impact on the observable
recombination rate because recombination between this selected locus and active
regions is observable. In other words, it changes the coalescent process.

When going forward in time, two different lineages are crossed over to form
a new lineage. Here are the possibilities:

• Both lineages are from the selected class, and the resultant recombinant
is also in the selected class.

• Both lineages are from the unselected class, and the resultant recombinant
is also in the unselected class.

• One lineage is from the selected class and one from the unselected class.
The resultant recombinant can be either in the selected or unselected class.

When moving backward in time during the coalescent phase, we start with the
resultant recombinant. Let x be the relative frequency of the beneficial allele at
the time of recombination in a single deme. We have only two cases to consider.
If the recombinant is in the unselected class, then at least one source lineage
is also in the unselected class. The second source lineage for a recombinant is
from the selected class with probability x. Otherwise, it is from the unselected
class.

The complementary statement is true when the recombinant is from the
selected class. At least one source lineage must be from the selected class. The
second source lineage is from the selected class with probability x, and is from
the unselected class otherwise.

Note that when the source lineages are from both classes, which lineage gets
what active region is defined by the recombination cut site. That is, if the
selected locus is on the left of the cut site and is selected, then the “left” lineage
source must be from the selected class.

Finally, we consider a simple case that one of the source lineages has no
active regions. This can be quite common when the selected locus is a long way
from the sequence locus. A recombination event can be swapped for a simple
change in class and hence, does not require an extra lineage to be tracked. That
is, when going back in time a selected class lineage may move into an unselected
class, as far as all active regions are concerned, or vice versa.
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4 Random Numbers

The random number generator is not a default java random number generator,
as this has a period of only 248 and fails some random number tests in the
die harder battery of random number tests. We have a fast random number
generator that passes all die harder tests and avoids the hyperplanes problem6,
and has a period of 2128−1. The internal state 64 bit variable that is incremented
in a m-sequence implemented via the shift xor method, combined with a 64 bit
Weyl sequence. Intermediate output is via the addition of both sequences and
masking. This is much faster7 than Mersenne Twister, while still avoiding the
LCG problems.

Note that other random number generators will be available in the future.
Adding a new random number generator has been designed to be as easy as
possible. Note that for some parameter choices, up to 50% of the CPU time is
spent generating random numbers.

5 Current Status

At the time of writing, msms is almost a version 1. Currently, the version is a
release candidate, and we will pass the version 1 milestone once the first round
of bug reports and requests for enhancements has been considered.

Everything in ms is supported with the exception of gene conversion.

5.1 Road Map

Other than bug fixes, no major changes to the code are expected to be needed.
Some work on the code comments and extra developer documents will be forth-
coming.

In the near future, we will add multiple selected alleles. This may require
some bigger changes. However, every endeavor will be made to avoid exces-
sive refactoring and to maintain compatibility with any 3rd party tools and
extensions.

6 Contributing

Contact Greg Ewing (gregory.ewing@unive.ac.at) directly for details. Currently,
the source control is via git and so patch submission is probably the simplest
way at this stage.

6George Marsaglia, Random Numbers fall mainly in the planes, PANS 1968,61(1)
7about 10 times faster in fact
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